Graphing Equations with Color Activity

Students must re-write equations into slope intercept form and then graph them on a coordinate plane.

©2011 Lindsay Perro
Between The Lines

Re-write each equation in slope intercept form.
Show your work below or on a separate sheet of paper.

1. \(2y = x\)
2. \(x + 6 = 0\)
3. \(y - 4 = x\)
4. \(y - 5 = 0\)
5. \(-2x + 3y = 18\)
6. \(y + x + 4 = 0\)
7. \(\frac{1}{2}x - y = 0\)
8. \(5 + y = 0\)
9. \(y + x = 4\)
10. \(-4x + 6y = -36\)
11. \(y + 4 = x\)
12. \(-2x - 3y = 18\)
13. \(x - 6 = 0\)
14. \(20x + 30y = 180\)

©2011 Lindsay Perro

http://www.beyondtheworksheet.com
Graph each line from the previous page.
Use the following colors to graph the indicated problem numbers.

<table>
<thead>
<tr>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems 1 & 7</td>
<td>Problems 2, 4, 8 & 13</td>
<td>Problems 3, 6, 9 & 11</td>
<td>Problems 5, 10, 12 & 14</td>
</tr>
</tbody>
</table>

©2011 Lindsay Perro

http://www.beyondtheworksheet.com
Between The Lines Follow Up

Answer each question based on observations from your graph and the equations.

1. What is the relationship between the red lines on the graph?

What is the relationship between the equations for the red lines (equations 1 & 7)?

How do the differences in the equations result in the differences in the lines?

2. What is the relationship between the green lines on the graph?

What is the relationship between the equations for the red lines (equations 2, 4, 8 & 13)?

How do the differences in the equations result in the differences in the lines?
3. What is the relationship between the blue lines on the graph?

What is the relationship between the equations for the red lines (equations 3, 6, 9 & 11)?

How do the differences in the equations result in the differences in the lines?

4. What is the relationship between the purple lines on the graph?

What is the relationship between the equations for the red lines (equations 5, 10, 12 & 14)?

How do the differences in the equations result in the differences in the lines?
Re-write each equation in slope intercept form.
Show your work below or on a separate sheet of paper.

1. \(2y = x\)
 \[y = \frac{1}{2}x\]

2. \(x + 6 = 0\)
 \[x = -6\]

3. \(y - 4 = x\)
 \[y = x + 4\]

4. \(y - 5 = 0\)
 \[y = 5\]

5. \(-2x + 3y = 18\)
 \[y = \frac{2}{3}x + 6\]

6. \(y + x + 4 = 0\)
 \[y = -x - 4\]

7. \(-\frac{1}{2}x - y = 0\)
 \[y = -\frac{1}{2}x\]

8. \(5 + y = 0\)
 \[y = -5\]

9. \(y + x = 4\)
 \[y = -x + 4\]

10. \(-4x + 6y = -36\)
 \[y = \frac{2}{3}x - 6\]

11. \(y + 4 = x\)
 \[y = x - 4\]

12. \(-2x - 3y = 18\)
 \[y = -\frac{2}{3}x - 6\]

13. \(x - 6 = 0\)
 \[x = 6\]

14. \(20x + 30y = 180\)
 \[y = -\frac{2}{3}x + 6\]
Between The Lines Follow Up

Answer each question based on observations from your graph and the equations.

1. What is the relationship between the red lines on the graph?

 The red lines intersect the y axis at the same point (0,0) but go off in different directions.
 They have opposite slopes.

 What is the relationship between the equations for the red lines (equations 1 & 7)?

 They are the same except for the negative sign in front of the ½ in number 7.

 How do the differences in the equations result in the differences in the lines?

 The same equations (minus the negative sign) result in the same line. The negative sign
 on #7 causes the line to descend at the same rate that #1 ascends, meaning they have
 opposite slopes.

2. What is the relationship between the green lines on the graph?

 Two are vertical and two are horizontal. The two vertical lines intersect at 6 and -6 on the x axis
 and the two horizontal lines intersect at 5 and -5 on the y axis.

 What is the relationship between the equations for the red lines (equations 2, 4, 8 & 13)?

 Equations 2 & 13 begin with x = and equations 4 & 8 being with y =.

 How do the differences in the equations result in the differences in the lines?

 The equations that begin with x = indicate that they will pass through the x axis only and
 therefore be vertical. The equations that begin with y = indicate that they will pass
 through the y axis only and therefore be horizontal. The number that comes after the
 equal sign indicates where on each axis the line will pass through (the intercept).
3. What is the relationship between the blue lines on the graph?

 The four blue lines form two sets of parallel lines, each going in opposite directions.
 They share one of two y intercepts.

 What is the relationship between the equations for the red lines (equations 3, 6, 9 & 11)?
 All of the equations have a slope of either 1 or -1 and they have a y intercept of either 4 or -4.

 How do the differences in the equations result in the differences in the lines?
 The slope of 1 and -1 causes them to be parallel or go in the opposite direction. The y intercept of 4 or -4 causes two of the lines to pass through the 4 and two pass through -4 on the y axis.

4. What is the relationship between the purple lines on the graph?

 The four purple lines form two sets of parallel lines, each going in opposite directions.
 They share one of two y intercepts.

 What is the relationship between the equations for the red lines (equations 5, 10, 12 & 14)?
 All of the equations have a slope of either 2/3 or -2/3 and they have a y intercept of either 6 or -6.

 How do the differences in the equations result in the differences in the lines?
 The slope of 2/3 and -2/3 causes them to be parallel or go in the opposite direction. The y intercept of 6 or -6 causes two of the lines to pass through the 6 and two pass through -6 on the y axis.
Copyright

© 2011 Lindsay Perro. All rights reserved. Purchase of this unit entitles the purchaser only the right to reproduce the pages in limited quantities for classroom use only. Duplication for an entire school, an entire school system or commercial purposes is strictly forbidden without written permission from the publisher. lindsayperro@gmail.com

Copying any part of this product and placing it on the internet in any form (even a personal or classroom website) is strictly forbidden and is a violation of the Digital Millennium Copyright Act (DMCA). These items can be picked up in a Google search and then shared worldwide for free.
Are you looking for something that goes BEYOND THE WORKSHEET?

Lindsay Perro
Specializing in math resources for all grades!

Thank you for purchasing this product! I hope both you and your students enjoyed using this resource in your classroom!

http://www.beyondtheworksheet.com
lindsayperro@gmail.com